
Steganographie/ Überleitung Wasserzeichen

- Herausforderung Mediensicherheit:
 - Urheberschutz
- Macht hier Steganographie Sinn?
 - Ja, wenn man zum Beweis der Urheberschaft einen Schlüssel "zückt" und mit ihm eine Information aus dem Medium extrahiert
 - Aber:
 - K muss sicher sein
 - M muss schwer aus C entfernbar sein

Digitale Wasserzeichen/ Einordnung

- Wasserzeichenverfahren
 - Schutz durch Integration von Informationen direkt in das Datenmaterial selbst
 - Anwendung von steganographischen Techniken (geheime Nachrichten sozusagen unsichtbar machen)
 - o Für Bild, Video, Audio, 3D...

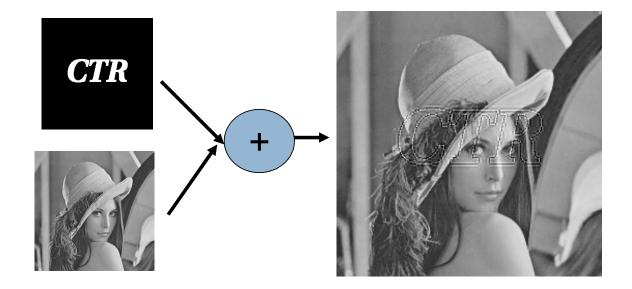
Digitale Wasserzeichen/ Definition und Terminologie

- Digitales Wasserzeichen:
 - transparentes, nicht wahrnehmbares Muster (Signal)
 - Muster/Signal repräsentiert die eingebrachte Information, meist Zufalls-Rauschsignal (pseudo-noise signal)
 - Präsenzwasserzeichen oder Codierung von Informationsbits
 - besteht in Analogie zur Steganographie aus:
 - Einbettungsprozeß E: Watermark Embedding
 - CW=E(C, W, K)
 - Abfrageprozeß/Ausleseprozeß R: Watermark Retrieval
 - -W=R(CW, K)
 - » K=Key (Schlüssel)
 - » W=Watermark (eingebrachte Information)
 - » C=Cover (Trägersignal)
 - » CW= watermarked Cover (markiertes Trägersignal)

Digitale Wasserzeichen/ Klassifizierung: Anwendungsgebiet

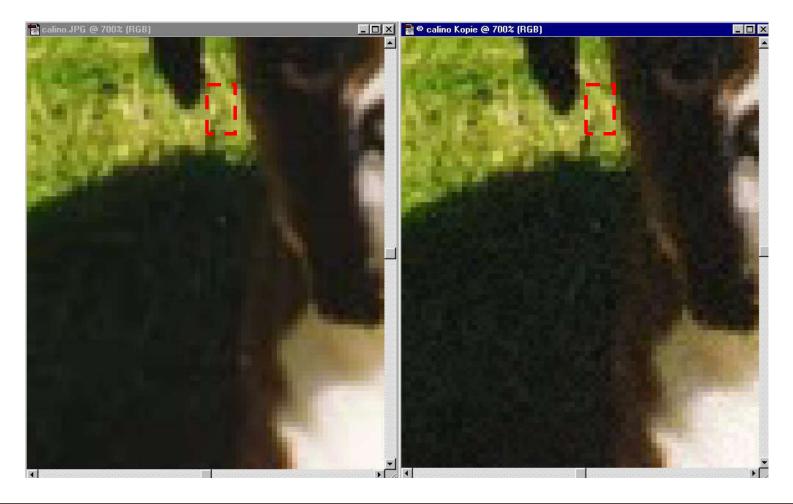
- Verfahren zur Urheberidentifizierung (Authentifizierung): Copyright Watermarks
- Verfahren zur Kundenidentifizierung (Authentifizierung): Fingerprint Watermarks
- Verfahren zur Annotation des Datenmaterials: Caption Watermarks
- Verfahren zur Durchsetzung des Kopierschutzes oder Übertragungskontrolle: Copy Control Watermarks oder Broadcast Watermarks
- Verfahren zum Nachweis der Unversehrtheit (Integritätsnachweis): Integrity Watermark/ Verfication Watermarks

Digitale Wasserzeichen/ Klassifikation nach Eigenschaften

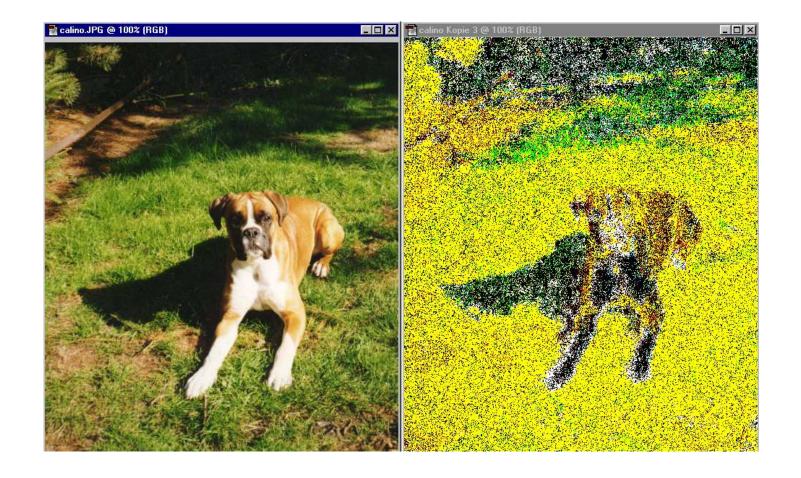

- Robustheit (robuste und fragile)
- Security (gezielte Angriffe, Invertierbarkeit)
- Detektierbarkeit (verdeckte Kommunikation)
- Wahrnehmbarkeit (Transparenz)
- Komplexität (blinde/nicht blinde)
- Kapazität (ein oder mehrere Info-Bits)
- Geheime/Öffentliche Verifikation (privat, public)
- Invertierbarkeit

Digitale Wasserzeichen/ Abgrenzung: Sichtbare Wasserzeichen

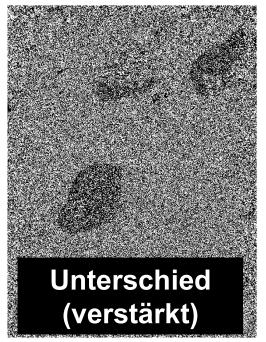
- deutlich sichtbares Symbol im Bild
 - Fernsehrsender: Logo in oberen Ecke
 - Bilddatenbanken



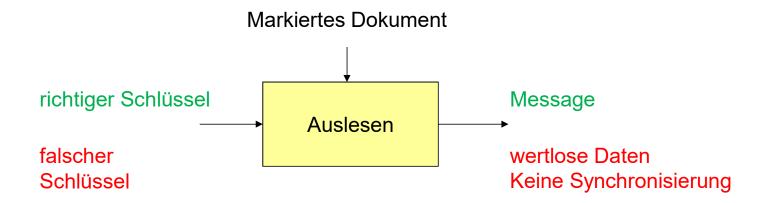
Beispiel Wasserzeichen: Digimarc



Beispiel Wasserzeichen - Zoom


Beispiel Wasserzeichen - Differenz

Beispiel Wasserzeichen - Differenz



Digitale Wasserzeichen/ Sicherheit

- Informationen können nicht ermittelt, gelesen und/oder von unberechtigten Dritten abgeändert werden.
- Die Sicherheit liegt in der Verborgenheit des Schlüssels, nicht in der Verborgenheit des Algorithmus.

Digitale Wasserzeichen/ Sicherheit

Problem

- Sicherheit für Wasserzeichen nur im Bildbereich teilweise erforscht
- Forscher vertreten teilweise die Meinung, sichere Wasserzeichen seien nicht möglich
- Kommerzielle Verfahren werden nicht veröffentlicht
 - Unsicherheit beim Kunden
- Sicherheit verschiedener Verfahren konnte gebrochen werden
- Beispiel: BOWS-Contest
 - http://bows2.ec-lille.fr
 - Bildwasserzeichen
 - Online-Verifikation des Wasserzeichens
 - · Herausforderung: Löschen des Wasserzeichens bei hoher Bildqualität
- Wasserzeichen wurden erfolgreich angegriffen
- Orakel ermöglichte ein SNR von über 50dB
- Codeanalyse und 10.000 Beispielbilder als Training erlaubten ähnliche Angriffe
- Reine Bildmanipulation brachte nur 20dB

Digitale Wasserzeichen/ Grundlegende Prinzipien

- Es existieren verschiedene Strategien zum Einbetten von Wasserzeichen
 - Viele unterschiedliche Medientypen (Video, Audio, Bild, Text etc.)
 - Viele unterschiedliche Dateiformate (MPEG, JPEG, GIF, WMA, PDF, DOC etc.)
 - Abhängig vom Trägersignal
 - Kein echtes Rauschen in Textdaten
 - Wenige Freiheitsgrade in MIDI-Daten

Rohdaten Transformierte Rohdaten Metadaten

- Least significant bit (LSB) Wasserzeichen
 - Einbetten der Information durch Ersetzen des LSB
 - Hohe Datenrate
 - Niedrige Komplexität
 - Keine Robustheit
 - Analog zu einfachen Stego-Lösungen

Beispiel LSB Bild

Rohdaten

Pixel

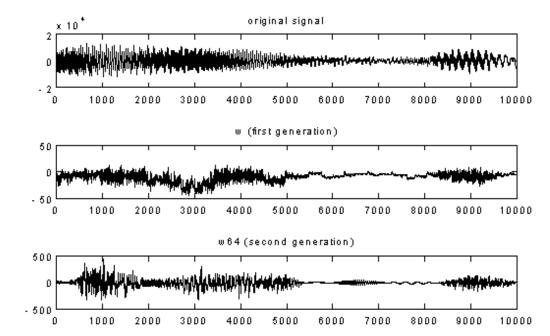
Transformierte Rohdaten

JPEG Koeffizienten

Metadaten

- Ausgewählte EXIF Informationen
- Geoinformationen
- Speicherzeit

- Einbetten von Rauschen
 - Wasserzeichen wird durch Pseudorauschen dargestellt
 - Trägersignal wird "künstlich verrauscht" durch Addition des Rauschsignals
 - Auslesen des Wasserzeichens durch Korrelation
 - Mehrere Bits einbettbar durch Verwendung mindestens zweier Pseudorauschsignale



- Einbetten von Rauschen, Beispiel
 - Boney, Tewfik and Hamdy Laurence Boney, Ahmed H. Tewfik, and Khaled N. Hamdy, Digital Watermarks for Audio Signals, 1996 IEEE Int. Conf. on Multimedia Computing and Systems June 17-23, Hiroshima, Japan, p. 473-480
 - PCM Audio Verfahren
 - Verwendet MPEG Psychoakustik
 - Nicht-Blind (Original wird zum Auslesen benötigt)

Original

Wasserzeichen

• Wasserzeichen, mp3 gefiltert

oney, Tewfik and Hamdy Laurence Boney, Ahmed H. Tewfik, and haled N. Hamdy, Digital Watermarks for Audio Signals, 1996 IEEE onf. on Multimedia Computing and Systems June 17-23, Hiroshima, nat. n. 473-480

- Statistische Verfahren
 - Verändern von statistischen Eigenschaften des Trägersignals
 - Auslesen durch Prüfen dieser Eigenschaften
 - Z.B. Eigenschaft über oder unter Durchschnitt
 - Erfordert Kenntnisse über Eigenschaften des Signals
 - Oft werden Schwellwerte und logarithmische Werte verwendet, um Robustheit zu erreichen

- (Naives) Beispiel für statistisches Verfahren:
 - 10 Samples: 10, 9, 1, 5, 1, 3, 9,5, 6, 2
 - Pseudozufällige Auswahl von je 4 Samples in Gruppe A und B (Auswahl=rot)
 - A: 10, 9, 1, 5, 1, 3, 9,5, 6, 2 = 25
 - B: 10, 9, 1, 5, 1, 3, 9,5, 6, 2 = 24
 - Ungefähr gleich, kein WZ zu entdecken
 - Regel: A > B => "0", B > A => "1"
 - "1" Einbetten
 - B muss größer A werden

• Beispiel:

- A reduzieren, B erhöhen
 - A: 10, 8, 1, 4, 1, 3, 8,5, 6, 1 = 21
 - B: 10 (!), 9, 1, 5, 1, 4, 9,6, 7, 2 = 28
- B deutlich größer als A
- Geringe individuelle Änderungen
- Resultierende Samples:
 - 10, 8, 1, 4, 1, 4, 8, 6, 7,1

10	9	1	5	1	3	9	5	6	2	Ausgangssamples
В	Α	-	Α	-	В	Α	В	В	Α	Pseudozufällige Auswahl
+1/-	-1	-	-1	-	+1	-1	+1	+1	-1	Veränderung
10	8	1	4	1	4	8	6	7	1	Resultierende Samples

Vorlesung TUD SoSe20

